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Abstract: We present a numerical phase stabilization method for phase-sensitive signal process-
ing of optical coherence tomography (OCT). This method removes the bulk phase error caused
by the axial bulk motion of the sample and the environmental perturbation during volumetric
acquisition. In this method, the partial derivatives of the phase error are computed along both fast
and slow scanning directions, so that the vectorial gradient field of the phase error is given. Then,
the phase error is estimated from the vectorial gradient field by a newly developed line integration
method; a smart integration path method. The performance of this method was evaluated by
analyzing the spatial frequency spectra of en face OCT images, and it objectively shows the
significant phase-error-correction ability of the method. The performance was also evaluated by
observing computationally refocused en face images of ex vivo tissue samples, and it was found
that the image quality was improved by the phase-error correction.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is an established three-dimensional (3D) optical imaging
modality [1]. Because of its noninvasive nature, high resolution, and high penetration, OCT
is used for sub-millimeter-scale clinical tomographic imaging such as in ophthalmology and
cardiology [2,3]. The axial resolution of OCT has been improved dramatically [4]. In conjunction
with its noninvasiveness and high penetration, this high axial resolution motivated researchers to
use OCT in microscopic imaging, which is called OCT microscopy (OCM) [5].

Although OCM can provide high axial and lateral resolutions, the latter is subject to a trade-off
with the depth-of-focus (DOF) [6]. This trade-off prevents simultaneous high lateral resolution
and high-penetration imaging. Several signal processing methods have been proposed to improve
the lateral resolution and thus overcome this trade-off. The first group of these methods is based
on nonlinear deconvolution referred to as CLEAN algorithm [7]. The method was transferred
from radio astronomy to OCT imaging by Schmitt et al. [8] and was applied to a two-dimensional
(2D) cross-sectional OCT image to improve both its axial and lateral resolutions. Another group
of approaches to overcome the lateral resolution versus DOF trade-off is based on complex
numerical manipulation performed in the frequency space. This group of methods includes
interferometric synthetic aperture microscopy (ISAM) [9–11], forward-light-propagation-model
based computational refocusing [12], and digital adaptive optics (DAO) [13–16].
However, these processing methods are phase-sensitive. Specifically, the CLEAN algorithm

uses the carrier phase of the OCT signal amplitude [8], while ISAM, forward-light-propagation-
model based computational refocusing, and DAO rely on the 2D and/or 3D Fourier transforms
of the complex OCT signal. However, the OCT phase is not always stable. Because OCT is a
scanning modality, environmental fluctuations such as temperature fluctuations and sample bulk
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motion during scanning results in fluctuating phase offsets among the A-scans. This is denoted
as bulk phase error (BPE) in this paper.

In some fortunate cases, the BPE is small, so the signal processing methods mentioned above
will work to some degree [12]. However, in other cases, the sample motion and environmental
fluctuations cause a non-negligible BPE, which limits the complex signal processing performance
significantly [17]. In addition, larger aberration and larger defocus require higher phase stability
(see Section 5.3 for details).

One of the most straightforward phase stabilization methods involves increasing the scanning
speed. This can be achieved by using a high-speed scanning light source [18] for swept source
OCT, high-speed line camera for spectral domain (SD-) OCT [19], or by a line-field OCT with a
high-speed camera [20]. Since the acquisition time becomes short, the sample bulk motion and
the environmental fluctuations that occur during scanning can be small. However, this approach
requires a high-performance OCT setup. In addition, excessively high scanning speeds cause
instability in the lateral optical scanners, such as the galvanometric mirror. This approach can thus
also cause the BPE. Full-field (FF-) OCT offers another solution as it does not use galvanometric
mirror and also it measures an en face OCT at a certain depth by a single-shot acquisition.
However, FF-OCT is not really convenient as a basement of some OCT extensions, such as some
types of polarization-sensitive OCT, which heavily depend on optical fiber implementation [21].
Ahmad et al. demonstrated an OCT scanning head with a cantilever mount [22]. Although it did
improve the phase stability, it requires addition of a mechanical extension to the OCT scanner.

A numerical post-processing approach for phase stabilization was demonstrated by Shemonski
et al. [23]. This method computes the phase difference between adjacent A-scans along the
slow scan direction, and then estimates and corrects the phase by integrating it along the scan
direction. However, this method assumes that the BPE along the fast scan is small so that the
phase error can be removed using a mean filter. Although this method works reasonably well, the
above assumption is not really accurate, as we will show in the following sections. Therefore, a
new numerical phase stabilization method without the use of this assumption might improve the
complex signal processing performance for OCT.
In this paper, we present a new phase stabilization method, i.e., BPE-correction method that

does not use the assumption mentioned above. The proposed method first computes the en face
2D phase differentiation of the complex OCT signal, i.e., the 2D vectorial phase gradient field,
and the vectorial field is then integrated to estimate the 2D BPE. A simple integration method
that integrates the gradient field along the fast or slow scan directions necessarily results in an
accumulation of the phase measurement error in one of these directions. To avoid this error
accumulation, we demonstrate an integration method with a dynamically generated integration
path, which is described as the smart integration path (SIP) method.
The SIP method is evaluated quantitatively based on the en face spatial frequency spectra

of the phase-corrected complex OCT signals and is also evaluated qualitatively based on the
computational refocusing performance. The simple integration method is also evaluated using
the same methods and is compared with the SIP method.

2. Bulk-phase-error estimation and correction

The purpose of this study is to establish a BPE correction method. In this section, the principle
of the method is described as follows. (1) An appropriate mathematical model of an OCT signal
with a BPE is defined (Section 2.1). (2) Using this OCT signal model, the BPE estimation
method is then presented. This step is further subdivided into two steps: estimation of the en face
vectorial gradient field of the BPE (Section 2.2), and estimation of the BPE from the gradient
field (Section 2.3). (3) Finally, the BPE is removed from the OCT signal (Section 2.4).
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2.1. Model of the OCT signal with the bulk phase error

The BPE mainly originates from bulk motion occurring during the measurement period. This
bulk motion can be classified into lateral and axial motions. We assume here that the former is
smaller than the lateral optical resolution of OCT, thus meaning that it can be safely ignored.
Although this assumption may not be true for some clinical measurements, e.g., retinal OCT, it is
reasonable for most microscopic OCT imaging and anesthetized animal imaging applications.

The axial motion is also assumed to be smaller than the depth resolution of OCT. However, the
point spread function (PSF) of OCT is a complex function that is based on both the amplitude and
the phase. Because the phase changes more rapidly than the amplitude along the depth direction,
a small axial motion may change the phase of the OCT signal. Therefore, we only consider the
phase error caused by the bulk motion here.
In addition to the axial motion, air turbulence and temperature drift during the measurement

can also cause the BPE. These perturbations alter the refractive index of both the air and the
optical fiber, i.e., they change the optical path difference (OPL) between the sample arm and the
reference arm in an interference system, which ultimately results in the BPE.
By taking the BPE into account, the OCT signal can be modeled as

S(x, y, z) = A(x, y, z) exp i [φs(x, y, z) + φb(x, y)] , (1)

where x and y are the lateral positions along the fast and slow scan directions, respectively, and z
is the depth position. A(x, y, z) is the OCT signal amplitude, φs(x, y, z) is the phase caused by the
sample structure (sample phase), and φb(x, y) is the BPE.

It should be noted that the BPE φb(x, y) is not a function of z because the axial motion occurs
simultaneously at all depth positions. In contrast, the sample phase φs(x, y, z) is a function of
x, y, and z because the sample has a 3D structure. We use this difference in terms of the depth
dependency to estimate the BPE, as will be described in the following sections.

2.2. Estimation of vectorial gradient field of the bulk phase error

As will be discussed in Section 5.1, it is difficult to estimate the BPE directly from the OCT
signal. Therefore, we initially estimate the en face gradient of the BPE, which is a vectorial
field with x- and y-components, and then estimate the BPE from this vectorial gradient field. In
this section, we explain the process required to compute the vectorial gradient field by using the
mathematical model that was presented in the previous section [Eq. (1)].
The gradient at each en face position is computed from the adjacent A-lines. Two adjacent

A-lines oriented along the x-direction are written as

S(x, y, z) = A(x, y, z) exp [iφs(x, y, z) + iφb(x, y)] , (2)

and
S(x + ∆x, y, z) = A(x + ∆x, y, z) exp [iφs(x + ∆x, y, z) + iφb(x + ∆x, y)] , (3)

where ∆x represents the separation of the A-lines. The phase difference is then computed by
multiplying S(x + ∆x, y, z) by the complex conjugate of S(x, y, z), as follows

S(x + ∆x, y, z)S∗(x, y, z) = A(x, y, z) exp [i∆φs(x, y, z) + i∆xφb (x, y)] , (4)

where ∆φs(x, y, z) = φs(x + ∆x, y, z) − φs(x, y, z) is the sample phase difference and ∆xφb (x, y) =
φb(x + ∆x, y) − φb(x, y) is the x-gradient of the BPE. A(x, y, z) is A(x + ∆x, y, z)A(x, y, z). Note
that A∗(x, y, z) = A(x, y, z) because it is a real function. This equation can be rewritten using
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Euler’s formula as

S(x + ∆x, y, z)S∗(x, y, z) =
A [cos∆φs cos∆xφb − sin∆φs sin δxφb + i (sin∆φs cos∆xφb + cos∆φs sin∆xφb)] .

(5)

The x-gradient of theBPE, denoted by∆xφb (x, y), is obtained by averaging S(x+∆x, y, z)S∗(x, y, z)
along the depth direction as follows. The depth averaging of Eq. (5) becomes

〈S(x + ∆x, y, z)S∗(x, y, z)〉z =
〈A〉z 〈cos∆φs〉z cos∆xφb − 〈A〉z 〈sin∆φs〉z sin∆xφb

+ i 〈A〉z 〈sin∆φs〉z cos∆xφb + i 〈A〉z 〈cos∆φs〉z sin∆xφb,
(6)

where 〈〉z represents the averaging along the depth direction.
Since the A-scan spacing ∆x is smaller than the lateral optical resolution, we can safely assume

that φs(x, y, z) ' φs(x + ∆x, y, z). In addition, the sample phase φs(x, y, z) is distributed randomly
along the depth direction. Therefore, ∆φs(x, y, z) is also distributed randomly and is centered
at zero. In addition, the distribution is as narrow as it is not affected by phase wrapping. This
suggests that 〈sin∆φs〉z approaches zero asymptotically via depth averaging. On the other hand,
the BPE is not truly a function of x or y, but is in fact a function of time. This means that
∆xφb (x, y) is not necessarily close to zero.
By substituting 〈sin∆φs〉z → 0 into Eq. (6), we obtain

〈S(x + ∆x, y, z)S∗(x, y, z)〉z = 〈A〉z 〈cos∆Φs〉z exp [i∆xΦb(x, y)] (7)

Since 〈A〉z and 〈cos∆φs〉z are real functions, the x-gradient of the BPE can be computed by
taking the phase angle of 〈S(x + ∆x, y, z)S∗(x, y, z)〉z to be

∆xφb (x, y) = ∠〈S(x + ∆x, y, z)S∗(x, y, z)〉z (8)

Note that 〈S(x + ∆x, y, z)S∗(x, y, z)〉z is obtained via the OCT measurement. This is therefore the
equation that provides the x-gradient of the BPE from the measured data.

By applying the same process in the y-direction, we can obtain the y-gradient field ∆yφb (x, y)
as follows

∆yφb (x, y) = ∠〈S(x, y + ∆y, z)S∗(x, y, z)〉z, (9)

where ∆y represents the separation of the A-lines along the y-direction. Therefore, the en face
vectorial gradient field ∆φb(x, y) =

(
∆xφb (x, y),∆yφb (x, y)

)
is determined.

2.3. Smart-integration-path (SIP) method for estimation of the bulk phase error from
the vectorial gradient field

2.3.1. Problem description

The next step in BPE correction is to estimate the BPE itself from the vectorial gradient field
obtained in Eqs. (8) and (9). This process can be achieved by applying line integrations to the
gradient field. Here, we first clarify the difficulty of this line integration.

The simplest line integration approach is to perform line integrations on each horizontal (x) line
along the x-direction and also perform a line integration along the y-direction at only one of the
vertical (y) lines, e.g., the line furthest to the left in an en face field. The latter step is performed
to achieve consistency among all the horizontal lines. This method is equivalent to performing
a line integration with the paths shown in the example in Fig. 1. Here, the x-gradient values
computed in the previous section are assigned to the boundaries of the horizontally adjacent
pixels and the y-gradient values are assigned to the vertical boundaries. The integration begins
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Fig. 1. Schematic of the simplest integration path to compute the BPE from its vectorial
gradient field. The x-gradient values of the BPE are assigned to the boundaries between the
horizontally adjacent pixels, while the y-gradients are assigned to the vertical boundaries.
The blue arrows indicate the integration paths and the red line indicates the path distance
between pixels-A and B.

from the left bottom corner in the upward direction and then turns to the right as indicated by the
blue arrows.
Although this method is correct in principle, there are two problems with it. First, although

the integration path distances between the horizontally adjacent pixels are very short, the
corresponding distance for vertically adjacent pixels can be long, particularly at the right side
of Fig. 1. For example, pixels-A and B are only related by the long path indicated by the red
dashed line. OCT measurements suffer from noise, and this results in an estimation error for the
phase gradient. This error then accumulates along the integration path. As a result, the mutual
consistency of the estimated BPEs between pixels related by these long integration paths is low,
although they are neighboring pixels.
Second, most of the estimated y-gradient values are not used in this line integration. The

information throughput of this method is thus not optimal.
In the subsequent sections, we propose a new line integration method to overcome the two

problems above. Later in this paper, the method described in this section, which is referred to as
“simple integration method,” is used as a reference standard to evaluate the performance of the
new method.

2.3.2. Estimating the bulk phase error from surrounding pixels

In this and the subsequent sections, we present a new line integration method denoted as SIP
method. This method consists of three steps; (1) estimating the BPE of a pixel that is denoted as
a target pixel, from that of a neighboring pixel that is defined as a source pixel, (2) improving
the estimation accuracy through use of multiple source pixels, and (3) estimating the BPE of a
whole en face field. Steps-1 and 2 are described in this section and Step-3 is described in the next
section (Section 2.3.3).

Figure 2 depicts Step-1, where the two fundamental patterns of the integration paths are shown.
The center (orange) pixel is the target pixel and the blue pixel represents a neighboring source
pixel. In principle, an enormous number of possible paths from the source to the target pixels
can be considered. However, by restricting the path length to be shorter than or equal to the three
pixel boundaries, the numbers of paths become two and three for Figs. 2(a) and (b), respectively,
as indicated by the arrows.
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Fig. 2. Two fundamental integration-path patterns that estimate the BPE of the target pixel
(orange pixel) from the BPE of the source pixel (blue).

For each integration path, the BPE of the target pixel is then estimated using the line integration.
Since each basic pattern contains multiple integration paths, multiple estimates are obtained.
These phase estimates are averaged in complex form to obtain the final estimate.

This step (Step-1) is summarized by the following equations. For Fig. 2(a), the BPE of the
target pixel is estimated as

φb(x0, y0) ≡ ∠
[
exp i

{
φ
(s)
b + ∆yφb(x0 − ∆x, y0 − ∆y) + ∆xφb(x0 − ∆x, y0)

}
+ exp i

{
φ
(s)
b + ∆xφb(x0 − ∆x, y0 − ∆y) + ∆yφb(x0, y0 − ∆y)

}]
,

(10)

where (x0, y0) is the target pixel position and φ(s)b is the previously estimated BPE of the source
pixel. The first and second terms correspond to paths-(i) and (ii) of Fig. 2(a), respectively.
Similarly, for Fig. 2(b),

φb(x0, y0) ≡ ∠
[
exp i

{
φ
(s)
b + ∆xφb(x0 − ∆x, y0)

}
+ exp i

{
φ
(s)
b + ∆yφb(x0 − ∆x, y0) + ∆xφb(x0 − ∆x, y0 + ∆y) − ∆yφb(x0, y0 + ∆y)

}
+ exp i

{
φ
(s)
b − ∆yφb(x0 − ∆x, y0 − ∆y) + ∆xφb(x0 − ∆x, y0 − ∆y) + ∆yφb(x0, y0 − ∆y)

}]
,

(11)
where the first to third terms correspond to paths-(ii), (i) and (iii), respectively.

It is also noteworthy that although Fig. 2 shows only two patterns, it is exhaustive for all
combinations of the source and target pixels. Namely, by placing the target pixels at the center of
the 3 × 3 pixel field, any patterns with a single neighboring source pixel can be converted into one
of the two presented patterns by rotation. Note that the positive/negative signs of each gradient
in Eqs. (10) and (11) should be selected appropriately for these secondary patterns according
to the direction of the path.Step-2 is estimation of the BPE of the target pixel from multiple
neighboring source pixels. For this estimation procedure, multiple estimates are computed from
each of the source pixels by the method of Step-1 at first [exemplified in (i) of Fig. 3]. Then,
as depicted in (ii) of Fig. 3, the final estimate of the target pixel, φ(t)b , is computed by complex
averaging of these multiple estimations as

φ
(t)
b (x0, y0) ≡ ∠

∑
i

exp iφ(i)b (x0, y0), (12)

where φ(i)b is the estimate of φb from the i-th source pixel.
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Fig. 3. Example of BPE estimation frommultiple neighboring source pixels (blue). Multiple
BPE estimations of the target pixel (orange) are obtained independently from each of the
source pixels (i), and the estimated BPEs are averaged in complex form (ii).

2.3.3. Sequential estimation of the entire en face bulk phase

The BPE of the complete en face field is finally estimated by performing Steps-1 and 2 sequentially.
In this sequential process, we first select the initial source pixel, which is typically the center pixel
of the en face field. Although the BPE of the initial source pixel is unknown, we can safely define
it as being zero. Because this initial phase only affects the constant offset of the BPE estimate,
this arbitrary selection of the initial phase does not harm the generality. After the initial source
pixels are selected, the estimation is sequentially performed as depicted in Fig. 4. After the initial
source pixels are selected, the estimation is sequentially performed as depicted in Fig. 4. The first
estimation is performed for the target pixel (orange) immediately above the initial source pixel
(blue) [Fig. 4(a)], for which the estimation is performed in the 3 × 3-pixel region centered at the
target pixel (red box). The second target pixel is located at the right of the first one and estimated
again in the 3 × 3-pixel region (red box) [Fig. 4(b)]. The estimation procedure is sequentially
performed along the spiral trajectory depicted in the figure by the dashed arrow. Note that as the
sequential estimation process progresses, the number of source pixels available increases. For
example, four source pixels are available for estimation in Fig. 4(c), for which the estimation
process is performed in the red box.
In this paper, we call the estimation process that is described in these sections as the SIP

method. This SIP method is free from the problems associated with the simple-integration
method that was described in Section 2.3.1. Namely, each pixel is directly connected to all
neighboring pixels as a target or source pixel. In addition, all gradient values are fully used in the
estimation.

2.4. Bulk phase error removal from OCT volume

After the BPE φb(x, y) is estimated, it is removed from the original volumetric OCT data by
complex conjugate multiplication as

S′(x, y, z) ≡ S(x, y, z) exp
[
−iφ(t)b (x, y)

]
, (13)

where S′(x, y, z) is the BPE-corrected OCT signal.
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Fig. 4. Schematic of sequential estimation of the BPE. In the first step (a), the BPE of
the center pixel in the entire en face field (blue pixel) is set to be zero. The BPE of the
pixel above the center pixel (orange pixel) is estimated by applying the integral pattern
from Fig. 2(b) to the red-boxed region. In the second step (b), the BPE of the target pixel
(orange pixel) is estimated from two source pixels (blue pixels) by the integral patterns from
Figs. 2(a) and (b). This estimation is sequentially performed by following the spiral route
[dashed spiral arrows in (a)-(c)]. (c) is another example, where four source pixels (blue
pixels) were used to estimate the BPE of the target pixel (orange pixel). The light blue pixels
were pixels whose BPE have been estimated.

3. Performance evaluation method

3.1. System setup and samples

To validate the SIP method, we used a SD-OCT system based on a fiber Michelson interferometer.
The center wavelength of the probe beam was 820 nm and the bandwidth was 70 nm (M-D840-
HP-i, Superlum, Ireland). The probe arm consisted of a fiber tip collimator (F280APC-850,
Thorlabs Inc.), which collimated the beam to a 4.0 mm diameter, a 2D galvanometric scanner
(GVS102, Thorlabs) and an OCT objective with an effective focal length of 18 mm (LSM02-BB,
Thorlabs). These probe-arm specifications gave an in-focus lateral resolution of 4.8 µm and a
depth-of-focus of 110 µm. The axial resolution was measured to be 4.2 µm in air. The spectral
interference signal was measured using a spectrometer that was specifically designed for SD-OCT
(a prototype device, Horiba, Kyoto, Japan). The spectrometer was equipped with a line CMOS
camera (spL4096-140km, Basler AG, Germany) that digitized the interference signal through
a Camera Link frame grabber (PCIe-1433, National Instruments, TX) at a line rate of 50,000
lines/s. Although the camera has 4096 pixels, only the central 2048 pixels were used. The axial
pixel separation in an OCT image was 3.2 µm in air. Note that zero-padding was used to measure
the axial resolution but not used for OCT image generation. The signal sensitivity was 90 dB.

The spectral interference signal was rescaled to the k-linear domain and numerical dispersion
compensation was applied. The average spectrum was then subtracted from each spectrum to
remove fixed pattern noise. Finally, the complex OCT signal was obtained using a fast Fourier
transform (FFT).
Volumetric acquisition was performed over a 1 mm × 1 mm lateral region with 512 × 512

A-lines. These scanning parameters resulted in a lateral pixel spacing of 1.9 µm, which is a 0.39
fraction of the lateral resolution. The OCT volume was acquired in 6.6 s with 80% acquisition
duty.

The OCT system was controlled by custom-made software written in LabVIEW 2018 (National
Instruments, TX). The BPE correction methods were implemented in Python 3.7 with NumPy
library ver. 1.16.5.

For the validation study, two chicken breast muscle tissues and two porcine heart tissues were
used as samples. These samples were dissected to a sample size of approximately 2.5 mm × 2.5
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mm. The samples were set so that the tissue surface (and not the cleavage surface) faced the
objective. Physiological saline was applied to the surface to prevent the sample from drying out,
but no refractive index matching gel was applied.

3.2. Objective evaluation by en face spatial frequency spectrum

The performances of the BPE-correction methods were evaluated objectively by en face spatial
frequency spectrum analysis, which is described in this section, and also by observation of
computationally refocused images, as will be described in Section 3.3.
The en face spatial frequency spectrum is a 2D Fourier transform of an en face slice of a

complex OCT volume. If there is no BPE, then the frequency spectrum width is defined by the
lateral optical resolution and the spectrum is centered at the zero frequency. However, if a BPE
that is random or nonlinear with respect to the lateral space exists, the spatial frequency spectrum
then becomes broad. If the BPE is linear with respect to the space, the spatial frequency spectrum
may be off-center. Specifically, if the BPE correction works correctly, the spatial frequency
spectrum will become narrow and will be centered at the zero frequency.

Using these properties of the spatial frequency spectrum as a basis, the BPE correction methods
are evaluated as follows. First, we extract an en face slice from a complex OCT volume. Then, the
BPE correction based on either simple integration or the SIP method is applied, and the en face
spatial frequency spectrum is computed using a 2D-FFT. This computation was performed for all
depth slices, ranging from 10- to 70-pixel depths, taken from a reference slice. The reference
slice was selected as the shallowest slice available that does not contain the sample surface. The
thickness of the depth region was 192 µm in air.

For the quantitative analysis, we computed the first and second moments, i.e., the mean and the
variance, for the fast (x) and slow (y) scanning directions from the absolute frequency spectrum.
These moments were computed at each depth. The depth average of the mean was then computed
to evaluate the off-centering behavior of the spectrum, while the standard deviation (STD) was
computed as the square root of the depth-averaged variance and was then used to evaluate the
broadening of the spectrum.

3.3. Subjective evaluation based on computational refocusing performance

To assess the impact of the BPE correction on phase-sensitive OCT processing, we performed
computational refocusing of the en face OCT images. The BPE properties of the complex OCT
volumes were corrected using the SIP method, and a computational refocusing operation based
on the forward light propagation model [12,24,25] was applied. For this refocusing operation, the
defocus amounts were first selected to minimize the information entropy of the en face images at
each depth [26]. These defocus values were then fitted by a third degree polynomial of the depth
by a nonlinear least squares fitting algorithm. The final refocused images were then computed
by correcting the fitted defocus. For comparison, computational refocused images were also
computed without BPE correction. The image sharpness was then subjectively evaluated for
each of the refocused images.
The details of the computational refocusing process are summarized in Appendix A.

4. Results

4.1. En face spatial frequency spectrum analysis

Figure 5(a) shows an example of an en face OCT image of a chicken breast muscle, while
Figs. 5(b)-(d) show the spatial frequency spectra of this image Fig. 5(b) without BPE correction,
Fig. 5(c) with BPE correction by the simple integration method, and Fig. 5(d) with BPE correction
by the SIP method.
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The non-phase-error-corrected spectrum [Fig. 5(b)] is broadened in the slow scanning frequency
direction (fy) and is off-centered along the fast scanning frequency (fx) direction. The spectral
broadening in the slow scanning direction would be caused by temporal phase fluctuations and
drift during volume acquisition, which is likely to have a greater impact in the slow scanning
direction than in the fast scanning direction. The observed off-centering would be caused by
temporal linear phase drift and also by the alignment error of the pivotal point of the galvanometric
scanner with respect to the back focal plane of the objective (see Section 5.2 for details). Note
that a dark vertical line can be seen at the zero-frequency in the fast scanning direction (fx). This
line is caused by the average spectrum subtraction for fixed pattern noise removal.

Fig. 5. Example of en face OCT (a), its spatial frequency spectra with no phase correction
(b), with the phase corrected by the simple integration path (c), and with the phase corrected
using the SIP method (d).

The off-centering can be corrected using the simple integration path method, as shown in
Fig. 5(c). However, the spectrum is broader in fy than the non-phase-error-corrected spectrum.
This is because the simple integration method enhances phase inconsistencies among the pixels
that are adjacent along the slow scanning direction, as discussed in Section 2.3.1.
The spectrum obtained via the SIP method [Fig. 5(d)] shows the good performance of the

correction method. The spectrum is centered in both directions and no spectral broadening is
observed.The properties of the spectra can be evaluated more quantitatively using their moments
as shown in Fig. 6, where each of the points represents a sample. The orange and blue dots
represent the chicken breast muscle samples, while the yellow and gray are used for the porcine
heart tissues. The means of fx were corrected to be close to the zero frequency by both the simple
integration method and the SIP method, as shown in Fig. 6(a). For fy, both the simple integration
method and the SIP method showed improvements as the means were closer to zero than the
non-phase-corrected data, as shown in Fig. 6(b). Although the SIP method showed a slightly
inferior performance when compared with that of the simple integration method, the differences
are only around a few mm−1, which corresponds to only a few sampling points in the numerically
obtained frequency spectra, so these differences are not significant.
In the STD of fx [Fig. 6(c)], the simple integration method again shows a slightly better

performance than the SIP method because it gives smaller STDs. However, the simple method
significantly increased (i.e., worsened) the STD in fy (frequency of slow scanning direction), while
the SIP method improved the STD, as shown in Fig. 6(d). Therefore, the overall performance
of the SIP method surpasses that of the simple method. It is noteworthy that the SIP method
slightly worsened the STD in fx [Fig. 6(c)], although it improved the STD in fy [Fig. 6(d)]. This
small worsening is due to SIP’s simultaneous BPE correction nature for both x and y directions.
The STDs of the original fx, SIP’s fx, and SIP’s fy all show similar values. It indicates that the
BPE along x was small even before the BPE correction. And then, SIP simultaneously corrected
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Fig. 6. Averaged moment values along the depth direction of each sample. (a) and (b) show
the mean values of the spatial frequency spectrum along the fast and slow scan directions,
respectively. (c) and (d) show the STDs along the fast and slow scan directions, respectively.
The orange and blue dots represent the chicken breast muscle, while the yellow and gray
dots represent the porcine heart tissues. The black bars represent the averaged value of each
moment.

the BPE along x and y. This simultaneous nature of SIP corrected the BPE along y as avoiding
the over correction but some residual errors would be redistributed into a residual BPE along x.

In summary, both the simple integration and SIP methods can remove the off-centering of the
spectra. However, the simple integration method broadened (i.e., worsened) the spatial frequency
spectra along the slow scanning direction, while the SIP method narrowed (i.e., improved) these
spectra. The SIP method would thus be a more preferable option than the simple integration
method.

4.2. Computational refocusing

Computational refocusing was performed with and without BPE correction as shown in Fig. 7,
where the sample was a chicken breast muscle. Fig. 7(a) shows the original non-refocused
image, while Fig. 7(b) shows a refocused image without BPE correction, and Fig. 7(c) shows
computationally refocused images with BPE correction performed by the SIP method. The
corrected defocus here was 480 µm. Figures 7(d) and 7(e) show magnified images of the boxed
areas shown in Figs. 7(b) and 7(c), respectively. Both the computationally refocused images in
Figs. 7(b) and 7(c) show significantly better resolution than the original non-refocused image.
The magnified images show that the resolution of the phase error-corrected refocused image in
Fig. 7(e) is higher than that of the non-phase-error-corrected refocused image in Fig. 7(d); for
example, the dark line structures more clearly appear in Fig. 7(e) than in Fig. 7(d) (indicated
by the arrows). Fig. 8 shows another example of computational refocusing of a porcine heart
tissue sample. At depths of 160 µm and 320 µm, the en face images were extracted at around the
in-focus depth, so the non-refocused image showed good resolution [Figs. 8(d) and 8(g)], and the
computationally refocused images, both without [Figs. 8(e) and 8(h)] and with [Figs. 8(f) and
8(i)] phase error correction showed similarly good resolution. However, the images without BPE
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correction [Figs. 8(e) and 8(h)] exhibit vertical line artifacts that may be caused by an interaction
between the BPE and the frequency filter used for computational refocusing [Eq. (14)]. This
artifact cannot be seen in the refocused image with BPE correction. At the depth of 480 µm, the
refocused images [Figs. 8(b) and 8(c)] both show fine fibrous structures that cannot be seen in the
non-refocused image in Fig. 8(a).

5. Discussions

5.1. Why the BPE was computed via its gradient

In general, the sample phase φs(x, y, z) in Eq. (1) is distributed randomly along the depth direction.
In the other words, the sample phase follows a uniform distribution. This fact gave us the
erroneous idea that the BPE, represented by φb(x, y), can be computed by averaging the phase of
Eq. (1) along the depth direction as 〈φs(x, y, z) + φb(x, y)〉z = 〈φs(x, y, z)〉z + φb(x, y) → φb(x, y).
However, this phase averaging procedure cannot give us an accurate estimate of φb for the
following reasons.

Fig. 7. Examples of computational refocusing of en face chicken breast muscle OCT. (a)
Original, non-computationally refocused OCT, (b) refocused image without phase error
correction, (c) refocused image with SIP-method based phase error correction, and (d) and
(e) show magnified images of (b) and (c), respectively.

Because φs is distributed randomly along the depth direction, φs + φb is also distributed
randomly. Note that the phase is a cyclic quantity and that its numerical representation ranges
over 2π. Therefore, the randomly distributed phase, i.e., φs + φb, is distributed uniformly over
the 2π-range. Additionally, the depth average of φs + φb converges toward the center of the
range. Since the phase representation range can be selected arbitrarily, the depth average does
not give an estimation of φb but, in fact, gives the center value of the arbitrarily selected phase
representation range.

5.2. Origins of BPE

Although the main source of the BPE is the fluctuations of both the sample and the environment,
static system properties also can cause the BPE. Our OCT signal model [Eq. (1)] indicates that
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Fig. 8. En face images of porcine heart tissue at three depth positions. The left column
shows the unprocessed images, the center column shows the refocused images without BPE
correction and the right column shows the refocused images with BPE correction. The
lateral field of the images is 1 mm × 1 mm. The boxed images at the left bottom of each
image are the magnified images of the boxed regions at the right.
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any phase component that is independent of the depth can be treated as the BPE. This includes,
for example, the lateral-position-dependent phase offset that occurred in the scanning optics [27].
The BPE correction methods also correct such static phase offset.

5.3. BPE correction is more important for larger defocus correction

The impact of BPE correction on computational refocusing varies with the amount of defocus.
Figure 9 shows a comparison of computational refocusing without (the second column) and with
(the third column) BPE correction at several depth positions, where the BPE correction was
performed using the SIP method. The first column shows the depth slices without computational
refocusing.
Around the focal plane (+0 µm), all three images show similar appearances. When defocus

exists, the refocused images show better resolution than the non-refocused image. More
specifically, if the defocus is moderate, e.g., +160 µm and +320 µm, then the refocused images
without and with BPE correction show similar image qualities. In contrast, for large defocus,
e.g., +480 µm and +640 µm, the refocused image with BPE correction reveals a finer structure
than the image without correction, as shown in the magnified insets.

Fig. 9. En face images of the chicken breast muscle at five depth positions. The first to third
columns show the unprocessed images, the refocused images without BPE correction, and
the refocused images with BPE correction, respectively. The fourth and fifth columns show
magnified images of the boxed regions in the second and third columns, respectively.
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This larger difference between the images with and without BPE correction can be accounted
for by the properties of the spatial frequency filter used to perform the computational refocusing
[Eq. (14) in Appendix A]. As shown in the equation, this phase filter is a quadratic phase function,
and thus has a finer structure at a higher spatial frequency (fr). Since the spatial frequency domain
can be interpreted as the pupil plane, it can then be said that the phase filter has a finer structure
at the periphery of an aperture. This fine structure then becomes even finer as the defocus (z0)
increases. The BPE causes noise in the spatial frequency spectrum. Because the phase filter
consists of a finer structure, it is affected more easily by the noise. Therefore, BPE correction is
more important for the case with larger defocus. This point can also be easily understood by
another description as follows. As the defocus increases, the size of PSF also increases. The
phase of the OCT signal should be consistent over the PSF. So, larger defocus requires higher
consistency of the phase, i.e., smaller BPE.

5.4. Computation time

In our implementation, the computation time of SIP was 123 s for a volume with 512 × 512
A-lines, while that of the simple integration method was 110 s. As we mentioned in Section
3.1, the algorithms were implemented in Python 3.7, and run on a computer with an Intel
Corei7-8750H CPU with 6 cores equipped with 16 GB memory. Both methods have similar
computation times, and it is not too long for real applications. However, it should be noted that
both implementations are not well optimized and use only a single core of the CPU. So, the
computation time can potentially be faster. For the same reason, one of the methods can be faster
than the others after the future optimization.

5.5. Further development

In the proposed method, sequential estimation of the BPE was performed along a spiral trajectory
as shown in Section 2.3.3. However, this method cannot work if there is a no-signal region, e.g.,
where vignetting occurs, in the path. This problem could be solved by using a more sophisticated
sequential estimation trajectory to be diverted away from the no-signal region. The design of
such a path would be a task for future development.

6. Conclusion

We have established a new BPE correction method called the SIP method for phase-sensitive
signal processing of OCT. The superior performance to a simple correction method (the
simple integration method) was demonstrated by spatial frequency analysis. The computational
refocusing performance was also improved by the BPE correction method. The SIP method
would also enhance the performance of other types of phase-sensitive OCT processing techniques,
including DAO, ISAM, and computational directional imaging methods [28–30].

Appendix

A. 2D forward-light-propagation-model based computational refocusing

The computational refocusing method that we used is based on a forward-light-propagation
model and is implemented as a phase filter in the spatial frequency domain. To refocus the OCT
data, the complex spatial frequency spectrum of an en face complex OCT slice is computed by a
2D discrete Fourier transform (DFT). The spatial frequency spectrum is then multiplied by the
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following phase filter.

H−1
(
fx, fy

)
= exp

{
−iπ
λcz0
2

(
f 2x + f 2y

)}
= exp

{
−iπ
λcz0
2

f 2r

}
, (14)

where fx and fy are the two lateral spatial frequencies, and fr is
√

f 2x + f 2y . λc is the center
wavelength of the probe beam and z0 is the amount of defocus. The refocused OCT signal is then
obtained by performing an inverse DFT of the filtered spectrum.
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